Global automorphic Sobolev spaces

نویسنده

  • Paul Garrett
چکیده

The goal is legitimization of term-wise differentiation of L spectral expansions, so that computations producing a classical outcome are correct. We are fond of L expansions because they are what Plancherel gives. Typically, L expansions are not continuous, much less differentiable, so the issue cannot be proving classical differentiability, which does not hold. To say that L spectral expansions are term-wise differentiable in a distributional sense is often valid, but too weak, since it is difficult to return from the large world of distributions to the smaller world of L functions. Further, already for Fourier transforms on R, the integral expressing Fourier inversion is not a superposition of L functions, since the exponentials are not in L(R). Notions of L Sobolev spaces are a balance of the simplicity of Hilbert space structures with extensions of notions of differentiability, insofar as solving elliptic partial differential equations of sufficiently high degree can move back to L. That is, Sobolev spaces are within finite distance of L, in terms of basic processes of analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of a Pre–trace Formula to Estimates on Maass Cusp Forms

By using spectral expansions in global automorphic Levi–Sobolev spaces, we estimate an average of the first Fourier coefficients of Maass cusp forms for SL2(Z), producing a soft estimate on the first numerical Fourier coefficients of Maass cusp forms, which is an example of a general technique for estimates on compact periods via application of a pre–trace formula. Incidentally, this shows that...

متن کامل

Evolution Equations in Generalized Stepanov-like Pseudo Almost Automorphic Spaces

In this article, first we introduce and study the concept of Sγ pseudo almost automorphy (or generalized Stepanov-like pseudo almost automorphy), which is more general than the notion of Stepanov-like pseudo almost automorphy due to Diagana. We next study the existence of solutions to some classes of nonautonomous differential equations of Sobolev type in Sγ -pseudo almost automorphic spaces. T...

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Well-posedness of the Fifth Order Kadomtsev-Petviashvili I Equation in Anisotropic Sobolev Spaces with Nonnegative Indices

In this paper we establish the local and global well-posedness of the real valued fifth order Kadomstev-Petviashvili I equation in the anisotropic Sobolev spaces with nonnegative indices. In particular, our local well-posedness improves SautTzvetkov’s one and our global well-posedness gives an affirmative answer to SautTzvetkov’s L-data conjecture.

متن کامل

On the Well Posedness of the Modified Korteweg-de Vries Equation in Weighted Sobolev Spaces

We study local and global well posedness of the k-generalized Korteweg-de Vries equation in weighted Sobolev spaces Hs(R) ∩ L2(|x|2rdx).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011